Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Energetyka Odnawialna
Name of the course in English	Renewable Energy
Number of the ECTS points	1
Language of instruction	Polish
Category of the course	Elective
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power
	engineering
Person responsible for the course	Prof. Słowomir Grądziel, doctor hab., MSc in Eng.,
Contact	professor of CUT
	slawomir.gradziel@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type	Lecture	Practical	Laboratory	Computer	Project	Seminar
	(G / NG)*		class		Laboratory	class	
2, 3, 4, 5,	G	15	0	0	0	0	0
6							

*G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Expanding knowledge on the use of renewable energy sources to generate
	electricity and heat
Objective 2	Acquiring the ability to select appropriate devices producing electricity and heat

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome symbol in the CUT SD	Methods of verification
	OUTCOMES RELATED TO KNOWLEDG	E	
EUW1	The doctoral student knows the principles of construction, operation, design and modelling of installations using alternative energy sources	E_W01 E_W02	Involvement in class activities, presentations
EUW2	The doctoral student knows and understands the principles of selecting devices that generate electricity and heat	E_W01 E_W02	Involvement in class activities, presentation
OUTCOMES RELATED TO SKILLS			
EUU1	The doctoral student is able to test a flat liquid solar collector in order to determine its efficiency.	E_U01	Graded presentation

EUU2	The doctoral student is able to select the appropriate device for generating electricity and heat and to correctly analyse and evaluate these	E_U01	Discussion
	devices		
	OUTCOMES RELATED TO SOCIAL COMPETE	ENCES	
EUK1	The doctoral student is prepared to recognize the		Discussion
	importance of knowledge of the design and	E_K03	
	modelling of installations using renewable energy	E_K01	
	sources		

Course outline

No.	Contents	Learning	No. of
		outcomes for the	hours
		course	
	LECTURE		
W1	Development of renewable energy. The world energy	EUW1	1
	situation. Renewable energy resources. Comparison of		
	economic and social effects of using various renewable		
	energy sources.		
W2	Water energy. Basic types of hydropower plants.	EUW1, EUW2,	
	Construction and operation of water turbines. Selection of a	EUU2, EUK1	2
	water turbine.		
W3	Wind energy. Influence of wind farms on the power system.	EUW1, EUW2,	1
	The use of offshore wind energy. Modelling of wind turbines	EUU2, EUK1	
	with horizontal and vertical axis of rotation.		
W4	Solar power plants. The method of determining the solar	EUW1, EUW2,	1
	constant. Active and passive ways to use the energy of the	EUU1, EUU2,	
	sun. Solar cells.	EUK1	
W5	Construction and operation of a heat pump. Thermodynamic	EUW1, EUW2,	2
	cycle in the heat pump. Selection of heat pumps. Types of	EUU2, EUK1	
	ground sources for heat pumps. Methods of selecting		
	horizontal and vertical ground probes.		
W6	Hybrid systems in central heating installations using	EUW1, EUW2,	2
	renewable energy sources	EUU2, EUK1	

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to	
	the completion of an activity type	
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER	
Hours allotted in the syllabus	15	
Consultations	1	
Examination / course credit assignment	2	
HOURS WITHOUT THE PARTICIPATION OF THE ACADEMIC TEACHER		
Independent study of the course contents	8	
Preparation of a paper, report, project,	5	
presentation, discussion		
ECTS POINTS STATEMENT		

Total number of hours	30
The ECTS points number	1

Preliminary requirements

No.	Requirements	
1	Basic knowledge of heat transfer	

Course credit assignment conditions / method of the final grade calculation

No.	Description
	COURSE CREDIT ASSIGNMENT CONDITIONS
1	75% attendance in class.
2	Delivery of an oral presentation on a selected topic.
	METHOD OF THE FINAL GRADE CALCULATION
	Credit assigned on the grounds of the delivery of the presentation and attendance in class.

Additional information

None

The course reading list

1	Lewandowski W.M., Pro-ecological renewable energy sources, Warsaw, 2012, WNT
2	Taler D., Rup K., Fundamentals of wind and water turbine calculations, Warsaw, 2021, PWN
3	Klugman-Radziemska E., Renewable energy sources. Computational examples, Gdańsk, 2009, Gdańsk University of Technology
4	Nantka M.B., Heating and heat engineering, Gliwice, 2010, Publishing House of the Silesian University of Technology
5	Kavanaugh S., Rafferty K., Geotermal Heating and Cooling. Design of Ground-Source. Heat Pump Systems., Atlanta, USA, 2014, ASHRAE