Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Hydrogeoinżynieria – wybrane zagadnienia
Name of the course in English	Hydrogeoengineering – selected problems
Number of the ECTS points	1
Language of instruction	Polish
Category of the course	Elective
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power
	engineering
Person responsible for the course	Tomisław Gołębiowski, doctor hab., MSc in Eng.,
Contact	professor of CUT
	tgolebiowski@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer Laboratory	Project class	Seminar
3	G	15	0	0	0	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

	<u> </u>
Code	Objective description
Objective 1	Introduction to the basic problems of hydroengineering i.e. hydrology,
	hydrogeology, hydraulics, water management, hydraulic engineering
Objective 2	Introduction to the basic problems of geoengineering i.e. geophysics, geodesy,
	geology, geotechnical engineering, geomechanics

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome symbol in the CUT SD	Methods of verification
	OUTCOMES RELATED TO KNOWLEDG	E	1
EUW1	The doctoral student knows and understands – in the extent enabling revision of the existing paradigms – the global scientific achievements encompassing the theoretical foundations as well as general and selected detailed problems specific to the discipline	E_W01	Graded paper
EUW2	The doctoral student knows the major development trends in the discipline in which the education takes place.	E_W02	Graded paper
	OUTCOMES RELATED TO SKILLS		

EUU1	The doctoral student is able to use knowledge from various fields of science or art to creatively identify and innovatively solve complex problems or perform research tasks, in particular: - plan the course of the experiment on the defined issue, - select the appropriate statistical program for the	E_U01	Graded paper
	experiment.		
EUU2	The doctoral student is able to perform a critical analysis and evaluation of scientific research results, expert activities and other creative types of work, as well as their contribution to the development of knowledge	E_U02	Graded paper
	OUTCOMES RELATED TO SOCIAL COMPETE	NCES	
EUK1	The doctoral student is able to perform a critical evaluation of the scientific achievements within the discipline	E_K01	Discussion

Course outline

No.	Contents	Learning	No. of
		outcomes for the	hours
		course	
	LECTURE		
W1	Overview of selected, advanced problems in the field of	EUW1, EUW2,	
	surface waters (hydrology) and groundwater (hydrogeology)	EUU1	2
		EUU2, EUK1,	
W2	Overview of selected, advanced problems in the field of	EUW1, EUW2,	
	hydraulic engineering and hydraulics	EUU1	2
		EUU2, EUK1,	
W3	Overview of selected, advanced problems in the field of	EUW1, EUW2,	2
	water management in the light of climate change	EUU1	
		EUU2, EUK1,	
W4	Overview of selected, advanced problems in the field of non-	EUW1, EUW2,	2
	invasive monitoring of hydrotechnical structures (geodesy)	EUU1	
	and their substrate (geophysics)	EUU2, EUK1,	
W5	Overview of selected, advanced problems in the field of	EUW1, EUW2,	2
	hydropower	EUU1	
		EUU2, EUK1,	
W6	Overview of selected, advanced problems in the field of	EUW1, EUW2,	2
	interaction between hydrotechnical structures (hydro	EUU1	
	construction) and their substrate (geology, geotechnics, geomechanics)	EUU2, EUK1,	
W7	Overview of selected, advanced problems in the field of	EUW1, EUW2,	2
	geomorphology and morphodynamics	EUU1	
		EUU2, EUK1,	
W8	Overview of a comprehensive approach to the problems of	EUW1, EUW2,	1
	hydrogeoengineering	EUU1	
	, , , , , , , , , , , , , , , , , , , ,	EUU2, EUK1,	

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to	
	the completion of an activity type	
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER	
Hours allotted in the syllabus	15	
Consultations	1	
Examination / course credit assignment	2	
HOURS WITHOUT THE PARTICIPA	TION OF THE ACADEMIC TEACHER	
Independent study of the course contents	8	
Preparation of a paper, report, project,	4	
presentation, discussion		
ECTS POINTS STATEMENT		
Total number of hours	30	
The ECTS points number	1	

Preliminary requirements

No	Requirements	
1	Basic knowledge of geoengineering and hydroengineering	
2	Basic knowledge of mathematics and physics	

Course credit assignment conditions / method of the final grade calculation

No.	Description		
	COURSE CREDIT ASSIGNMENT CONDITIONS		
1	80% attendance in class.		
2	Delivery/ submission of a paper presentation.		
	METHOD OF THE FINAL GRADE CALCULATION		
	Credit assigned on the grounds of a paper presentation		

Additional information

None		
INOIL		

The course reading list

1	Bajkiewicz-Grabowska E., 2020. General Hydrology, PWN, Warsaw.
2	Macioszczyk A., 2006. Fundamentals of Applied Hydrogeology, PWN, Warsaw
3	Puzyrewski R., Sawicki J., 2013. Fundamentals of fluid mechanics and hydraulics, PWN, Warsaw.
4	Gondowicz A., 1975. Hydraulic engineering, WSiP, Warsaw.
5	Balcerowicz M., 2020. Water management. Use, approvals and water services, Infor, Warsaw.
6	Czarnecki K., 2015. Contemporary geodesy, PWN, Warsaw.
7	Fajklewicz Z., 1972. An outline of applied geophysics, Geol., Warsaw.
8	Wiłun Z., 2013. An outline of geotechnical engineering, WKiŁ, Warsaw.
9	Majcherczyk T., 2006. Fundamentals of geomechanics. Ed. AGH, Krakow