Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Modelowanie komputerowe w inżynierii środowiska i energetyce
Name of the course in English	Computer modeling in environmental and energy engineering
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Mandatory
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power engineering
Person responsible for the course	Marcin Trojan, doctor hab., MSc in Eng., professor
Contact	of CUT
	marcin.trojan@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer Laboratory	Project class	Seminar
4	G	15	0	0	15	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Introduction to the finite difference method, finite volume method and the finite
	element method
Objective 2	Gaining knowledge necessary to independently choose the appropriate method of
	CFD analysis of the studied problem.

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome	Methods of verification
	specific characteristics of the discipline	symbol in	Vermedion
		the CUT SD	
	OUTCOMES RELATED TO KNOWLEDG	Ē	
EUW1	The doctoral student has knowledge of the principle		Involvement in
	of the finite difference method, finite volume and	E_W01	class activities,
	finite elements.	E_W02	presentation
EUW2	The doctoral student has knowledge of the		Involvement in
	application of the finite difference method, finite	E_W01	class activities,
	volume and finite elements in heat transfer	E_W02	presentation
	problems.		

EUW3	The doctoral student has knowledge of		Involvement in
	computational fluid mechanics, turbulent flow		class activities,
	modeling, heat transfer modeling		Presentation,
			written test
	OUTCOMES RELATED TO SKILLS		
	The doctoral student is able to solve engineering	E_U01	
EUU1	problems using the finite volume method and the		Presentation,
	finite element method		discussion
EUU1	The doctoral student is able to solve the problems	E_U01	
	of three-dimensional steady flow.		Presentation,
			discussion
OUTCOMES RELATED TO SOCIAL COMPETEN		ENCES	
EUK1	The doctoral student is able refer to the methods of		Discussion
	numerical analysis known in the literature that can	E_K01	
	be used in the implementation of the doctoral	E_K03	
	dissertation and is able to justify the models they		
	use.		

Course outline

No.	Contents	Learning	No. of	
		outcomes for the	hours	
		course		
	LECTURE			
W1	Introduction to the finite element method, finite differences,	EUW1, EUW2	6	
	finite volumes			
W2	Introduction to computational fluid mechanics	EUW3	6	
W3	Discussion of inaccuracies in the obtained solutions	EUW1, EUW2,	3	
		EUW3		
	COMPUTER LABORATORY			
K1	Established analysis of the temperature field under the	EUU1	3	
	boundary conditions of the 1st and 3rd kind. Comparison of			
	the results obtained with FEM with the strict analytical			
	solution.			
K2	Performing calculations of the flow through the 3D area	EUU2	12	
	using one of the commercial CFD calculation programs			

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to	
	the completion of an activity type	
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER	
Hours allotted in the syllabus	30	
Consultations	2	
Examination / course credit assignment	2	
HOURS WITHOUT THE PARTICIPATION OF THE ACADEMIC TEACHER		
Independent study of the course contents	8	
Preparation of a paper, report, project,	8	
presentation, discussion		
ECTS POINTS STATEMENT		

Total number of hours	50
The ECTS points number	2

Preliminary requirements

	No.	Requirements
Ī	1	Knowledge of differential and integral calculus
	2	Knowledge of the English language

Course credit assignment conditions / method of the final grade calculation

No.	Description		
	COURSE CREDIT ASSIGNMENT CONDITIONS		
1	75% attendance in class.		
2	Presentation of a report of the task assigned		
	METHOD OF THE FINAL GRADE CALCULATION		
	Credit assigned on the grounds of weighted average of the result of the written test and the		
	report presentation.		

Additional information

The scope of the lecture, including the level of advancement in presentation and modeling, takes into account the initial preparation and knowledge of the subject by doctoral students.

The course reading list

1	Taler J., Duda P Solving simple and inverse problems of heat conduction, Warsaw, 2003,
	WNT
2	Chapra Steven C. — Numerical Methods for Engineers, Nowy Jork, 2015, Mc-Graw Hill