Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Technika Badań Symulacyjnych w Transporcie i Logistyce
Name of the course in English	Simulation Techniques in Transport and Logistics
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Choosable
Field of education	Engineering and Technology
Discipline of education	Civil Engineering and Transport
Person responsible for the course Contact	CUT Prof Vitalii Naumov PhD Eng. vitalii.naumov@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	ster	Laboratory	Computer Lab	Project Class	Seminar		
2, 3, 4, 5	G	15	0	0	15	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Expanding knowledge in the field of simulation research
Objective 2	Acquiring the ability to use modern computer simulation tools

Learning Outcomes

	Learning Outcomes				
	Description of the learning outcome adjusted to the	Learning	Methods of verification		
	specific characteristics of the discipline	outcome			
Code		symbol in			
		the CUT			
		SD			
	OUTCOMES RELATED TO KNOW!	LEDGE			
FLIVA/4	A PhD student has knowledge of the application of	E_W02,	A final task		
EUW1	the systemic approach to transport and logistics issues	E_W03			
	OUTCOMES RELATED TO SKI	LLS			
EUU1	A PhD student is able to create a simulation model	E U02	A laboratory exercise		
E001	of the transport or logistics process	E_002			
	A PhD student knows how to develop a simulation		A laboratory exercise		
EUU2	experiment plan to solve problems in the field of	E_U02			
	transport and logistics				

OUTCOMES RELATED TO SOCIAL COMPETENCES				
EUK1	A PhD student is ready to critically evaluate the results of computer simulations	E_K01	A discussion in class	

Course outline

		Learning outcomes for	No.
No.	Contents	the course	of
			hours
	LECTURE		
W1	Systems approach as a basic tool for research on transport and logistics systems	EUW1, EUK1	2
W2	Theoretical principles of generating random variables	EUW1, EUU1, EUU2	3
W3	Program models of transport and logistics systems. Basics of Python modelling. Development of procedures. Create classes	EUW1, EUU1, EUU2, EUK1	6
W4	Basics of planning simulation experiments	EUW1, EUU1, EUU2, EUK1	2
W5	Analysis of simulation results. Repeatability of the simulation experiment	EUW1, EUU1, EUU2, EUK1	2

	COMPUTER LAB				
K1	Development of black and white box models	EUU1, EUU2, EUK1	2		
K2	Generating random variables in Python	EUU1, EUU2, EUK1	2		
К3	Development of the simplest model of the transport process in Python	EUU1, EUU2, EUK1	2		
К4	Development of simulation procedures for transport and logistics systems in Python	EUU1, EUU2, EUK1	2		
K5	Development of models of elements of transport and logistics systems as classes	EUU1, EUU2, EUK1	2		
К6	Automation of the simulation experiment	EUU1, EUU2, EUK1	2		
K7	Development of simulation results in Python	EUU1, EUU2, EUK1	3		

The ECTS points statement

The Eero points sta				
WORKING HOURS SETTLEMENT				
Type of activity	Average number of hours (45 min.)			
	dedicated to the completion of an activity			
	type			
SCHEDULED CONTACT HOURS WITH	I AN ACADEMIC TEACHER			
Hours allotted in the syllabus	30			
Consultations	1			
Examination / course credit assignment	2			
HOURS WITHOUT THE PARTICIPATION	OF AN ACADEMIC TEACHER			
Independent study of the course contents	12			
Preparation of a final task	15			
ECTS POINTS STATEMENT				
Total number of hours 60				

The ECTS points number	2
------------------------	---

Preliminary requirements

No	Requirements
1	Knowledge of the basics of mathematical statistics
2	Knowledge of the basics of programming

Course credit assignment conditions / method of the final grade calculation

No.	Description			
	COURSE CREDIT ASSIGNMENT CONDITIONS			
1	1 80% attendance in class. Completion of a final task.			
	METHOD OF THE FINAL GRADE CALCULATION			
Assessment of the final task, taking into account the attendance				

Additional information

Not specified	
---------------	--

The course reading list

1	Sokolowski, J.A., Banks, C.M. <i>Principles of Modeling and Simulation: a Multidisciplinary Approach</i> , 2009, John Wiley & Sons, Inc.
2	Brandimarte, P., Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics, 2014, John Wiley & Sons, Inc.
3	Cellier, F.E., Continuous System Simulation, 2006, Springer Science
4	Banks, J., Discrete-event System Simulation, 2001, Prentice-Hall
5	Downey, A.B. <i>Think Python: How to Think Like a Computer Scientist</i> , 2015, O'Reilly
6	Lutz, M., Python: Wprowadzenie, 2011, Helion