Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	MES z zastosowaniami w mechanice i inżynierii
Name of the course in English	FEM with applications in mechanics and engineering
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Choosable
Field of education	Engineering and Technology
Discipline of education	Civil Engineering and Transport
Person responsible for the course Contact	Prof. Jerzy Pamin PhD Eng. jerzy.pamin@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical classes	Laboratory	Computer Lab	Project Class	Seminar
2, 3, 4, 5	G	20	0	0	10	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description	
Objective 1	Consolidation and broadening of knowledge about FEM modelling	
Objective 2 Getting to know selected nonlinear models of materials and structures		
Objective 3 Acquiring the ability to simulate deformation and effort of a simple structure with various FEM models		

Learning Outcomes

	•		
	Description of the learning outcome adjusted to the	Learning	Methods of verification
	specific characteristics of the discipline	outcome	
Code		symbol in	
		the CUT	
		SD	
OUTCOMES RELATED TO KNOWLEDGE			
	A PhD student knows and understands FEM phrases		Involvement in class
EUW1	and algorithms for mechanics and thermo-	E_W01,	activities, a presentation
FOAAT	mechanics as well as selected models of engineering	E_W02	of a project, a final test
	materials		
	A PhD student knows and understands the	F W01	Involvement in class
EUW2	methodology of calculating nonlinear FEM models of	E_W01,	activities, a presentation
	selected materials and engineering structures	E_W02	of a project, a final test

	OUTCOMES RELATED TO SKILLS				
EUU1	A PhD student is able to calculate deformation and stress of a structural element in the linear and nonlinear range	E_U01	Involvement in class activities, a presentation of a project		
EUU2 A PhD student is able to prepare and present a presentation of his project work		E_U01	Involvement in class activities, a presentation of a project		
	OUTCOMES RELATED TO SOCIAL COMPETENCES				
A PhD student is ready to critically evaluate the results of numerical simulations of selected engineering issues		E_K01, E_K03	Involvement in class activities, a presentation of a project		

Course outline

No. Contents LECTURE W1 FEM modelling. To formulate local and global dynamics. EUW1, EUW2, EUU1 2 W2 FEM for thermo-mechanics of structures. FEM failures. EUW2, EUU1 2 W3 FEM algorithms for nonlinear problems. EUW2, EUU2, EUU1 2 W4 Computational plasticity. EUW1, EUW2, EUU1 2 W5 Modelling of scratching of quasi-brittle materials. EUW1, EUW2, EUU1 2 W6 Modelling of damage and fracture. EUW1, EUW2, EUU1 2 W7 Thermodynamic foundations of constitutive models. EUW1, EUW2, EUU1 2 W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1 2 W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2 W9 Analysis of deformation localization issues. EUW1, EUW2, EUU1 2		333.33 333		
LECTURE W1 FEM modelling. To formulate local and global dynamics. EUW1, EUW2, EUU1 2 W2 FEM for thermo-mechanics of structures. FEM failures. EUW1, EUW2, EUK1 2 W3 FEM algorithms for nonlinear problems. EUW2, EUU2, EUU1 2 W4 Computational plasticity. EUW1, EUW2, EUU1 2 W5 Modelling of scratching of quasi-brittle materials. EUW1, EUW2, EUU1 2 W6 Modelling of damage and fracture. EUW1, EUW2, EUU1 2 W7 Thermodynamic foundations of constitutive models. EUW1, EUW2, EUU1 2 W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1 2 W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2			Learning outcomes for	No.
LECTURE W1 FEM modelling. To formulate local and global dynamics. EUW1, EUW2, EUU1 2 W2 FEM for thermo-mechanics of structures. FEM failures. EUW1, EUW2, EUK1 2 W3 FEM algorithms for nonlinear problems. EUW2, EUU2, EUU1 2 W4 Computational plasticity. EUW1, EUW2, EUU1 2 W5 Modelling of scratching of quasi-brittle materials. EUW1, EUW2, EUU1 2 W6 Modelling of damage and fracture. EUW1, EUW2, EUU1 2 W7 Thermodynamic foundations of constitutive models. EUW1, EUW2, EUU1 2 W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1 2 W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2	No.	Contents	the course	of
W1FEM modelling. To formulate local and global dynamics.EUW1, EUW2, EUU12W2FEM for thermo-mechanics of structures. FEM failures.EUW1, EUW2, EUK12W3FEM algorithms for nonlinear problems.EUW2, EUU2, EUU12W4Computational plasticity.EUW1, EUW2, EUU12W5Modelling of scratching of quasi-brittle materials.EUW1, EUW2, EUU12W6Modelling of damage and fracture.EUW1, EUW2, EUU12W7Thermodynamic foundations of constitutive models.EUW1, EUW2, EUU12W8Variation rules and multi-field FEM formulations.EUW1, EUW2, EUU12W9Modelling of buckling problems.EUW1, EUW2, EUU12				hours
W2 FEM for thermo-mechanics of structures. FEM failures. W3 FEM algorithms for nonlinear problems. W4 Computational plasticity. W5 Modelling of scratching of quasi-brittle materials. W6 Modelling of damage and fracture. W7 Thermodynamic foundations of constitutive models. W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1		LECTURE		
W3 FEM algorithms for nonlinear problems. EUW2, EUU2, EUU1 2 W4 Computational plasticity. EUW1, EUW2, EUU1 2 W5 Modelling of scratching of quasi-brittle materials. EUW1, EUW2, EUU1 2 W6 Modelling of damage and fracture. EUW1, EUW2, EUU1 2 W7 Thermodynamic foundations of constitutive models. EUW1, EUW2, EUU1 2 W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1 2 W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2	W1	FEM modelling. To formulate local and global dynamics.	EUW1, EUW2, EUU1	2
W4 Computational plasticity. W5 Modelling of scratching of quasi-brittle materials. W6 Modelling of damage and fracture. W7 Thermodynamic foundations of constitutive models. W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1	W2	FEM for thermo-mechanics of structures. FEM failures.	EUW1, EUW2, EUK1	2
W5 Modelling of scratching of quasi-brittle materials. W6 Modelling of damage and fracture. W7 Thermodynamic foundations of constitutive models. W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1 EUW1, EUW2, EUU1 EUW1, EUW2, EUU1 2 W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2	W3	FEM algorithms for nonlinear problems.	EUW2, EUU2, EUU1	2
W6Modelling of damage and fracture.EUW1, EUW2, EUU12W7Thermodynamic foundations of constitutive models.EUW1, EUW2, EUU12W8Variation rules and multi-field FEM formulations.EUW1, EUW2, EUU12W9Modelling of buckling problems.EUW1, EUW2, EUU12	W4	Computational plasticity.	EUW1, EUW2, EUU1	2
W7 Thermodynamic foundations of constitutive models. EUW1, EUW2, EUU1 2 W8 Variation rules and multi-field FEM formulations. EUW1, EUW2, EUU1 2 W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2	W5	Modelling of scratching of quasi-brittle materials.	EUW1, EUW2, EUU1	2
W8Variation rules and multi-field FEM formulations.EUW1, EUW2, EUU12W9Modelling of buckling problems.EUW1, EUW2, EUU12	W6	Modelling of damage and fracture.	EUW1, EUW2, EUU1	2
W9 Modelling of buckling problems. EUW1, EUW2, EUU1 2	W7	Thermodynamic foundations of constitutive models.	EUW1, EUW2, EUU1	2
	W8	Variation rules and multi-field FEM formulations.	EUW1, EUW2, EUU1	2
W10 Analysis of deformation localization issues. EUW1, EUW2, EUK1 2	W9	Modelling of buckling problems.	EUW1, EUW2, EUU1	2
	W10	Analysis of deformation localization issues.	EUW1, EUW2, EUK1	2

No.	Contents	Learning outcomes for the course	No. of hours
			Hours
	COMPUTER LAB		
LK1	An introduction to a design exercise. An example of an elasto-plastic FEM analysis.	EUW2, EUU1, EUU2	2
LK2	Project realization.	EUW2, EUU1, EUU2	6
LK3	Presentation of projects.	EUW2, EUU2, EUK1	2

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity Average number of hours (45 min.) dedicated to the completion of an activ		
type SCHEDULED CONTACT HOURS WITH AN ACADEMIC TEACHER		
SCHEDOLLD CONTACT HOOKS WITH AN ACADEMIC TEACHER		
Hours allotted in the syllabus 30		
Consultations	1	

Examination / course credit assignment	1		
HOURS WITHOUT THE PARTICIPATION OF AN ACADEMIC TEACHER			
Independent study of the course contents	10		
Preparation of a paper, report, project, presentation, discussion	13		
ECTS POINTS STATEMENT			
Total number of hours	55		
The ECTS points number	2		

Preliminary requirements

No.	Requirements
1	Knowledge of mathematical analysis, basics of computational methods and FEM.
2	Knowledge of the basics of strength of materials and building mechanics.

Course credit assignment conditions / method of the final grade calculation

No.	Description		
	COURSE CREDIT ASSIGNMENT CONDITIONS		
1	1 80% attendance in class. Presentation of the developed project.		
	METHOD OF THE FINAL GRADE CALCULATION		
Weighted average of test marks and presentation marks, including attendance.			

Additional information

The course reading list

1	T. Belytschko, W.K. Liu and B. Moran, <i>Nonlinear Finite Elements for Continua and Structures</i> , John Wiley & Sons, 2000.
2	R. de Borst, M.A. Crisfield, J.J.C. Remmers and C.V. Verhoosel, <i>Non-linear Finite Element Analysis of Solids and Structures</i> , Second Edition, J. Wiley & Sons, Chichester, 2012.
3	U. Haussler-Combe, <i>Computational Methods for Reinforced Concrete Structures</i> , Ernst & Sohn, Berlin, 2015.
4	M. Kleiber, P. Kowalczyk, <i>Wprowadzenie do nieliniowej termomechaniki ciał odkształcalnych</i> , IPPT PAN, Warszawa, 2011.
5	M. Radwańska, A. Stankiewicz, A. Wosatko, J. Pamin, <i>Plate and Shell Structures. Selected Analytical and Finite Element Solutions</i> , J. Wiley & Sons, 2017.
6	G. Rakowski, Z. Kacprzyk, <i>Metoda elementów skoñczonych w mechanice konstrukcji</i> , Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2005.
7	E. de Souza Neto, D. Peric, D. Owen, Computational methods for plasticity - theory & applications, J. Wiley & Sons, 2008.
8	O.C. Zienkiewicz, R.L.Taylor and J.Z. Zhu, <i>The Finite Element Method</i> , Sixth Edition, Elsevier Butterworth-Heinemann, Oxford, 2005.